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Abstract. We apply the current spin-density functional formalism (CSDFT) of Vignale and Rasolt to two-
dimensional quantum dots in magnetic fields. Avoiding any spatial symmetry restrictions of the solutions,
we find that a broken rotational symmetry of the electronic charge density can occur in high magnetic fields.

PACS. 71. Electronic structure – 73.20.Dx Electron states in low-dimensional structures – 85.30.Vw Low-
dimensional quantum devices

1 Introduction

Several experiments on lateral or vertical quantum dots (i.e.,
small semiconductor nanostructures; see [1] for a re-
view) have been performed in large magnetic fields with
the aim of exploring the transition from the quantum
Hall to the fractional quantum Hall regime of the con-
fined two-dimensional electron gas [2–4]. Only vertical
quantum dots containing very few electrons could be
experimentally realized by Tarucha et al. [5]: Measure-
ments in zero and weak magnetic fields demonstrated
the validity of a shell model and Hund’s rules. More
recent experimental work [6] focuses on parabolic quan-
tum dots at filling factors ν ≤ 1, and we thus found it
worthwhile to extend the spin-density formalism applied
to circular quantum dots in our earlier work [7] to the
inclusion of homogeneous magnetic fields by applying
the so-called current spin-density functional theory (CS-
DFT) of Vignale and Rasolt [8], which provides a method
for describing interacting electrons in a gauge field. In
these proceedings, we report results of our calculations
in the polarized regime, showing that in large magnetic
fields, broken-symmetry solutions for the charge dens-
ity [9] may exist. A comparison to experimental results
and the effect of magnetic fields on spin- and charge-
density waves and singlet–triplet oscillations in weaker
magnetic fields will be published elsewhere. Here, we
concentrate on giving a short summary of our compu-
tational method within CSDFT for the case of unre-
stricted symmetry. We then discuss the example of a cir-
cular quantum dot with 10 electrons in strong mag-
netic fields.
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2 Current spin-density functional formalism

We employ the current- and spin-density functional for-
malism (CSDFT) [8] to calculate the electronic structure
of quantum dots in an external magnetic field. We refer to
the original work of Vignale and Rasolt [8] for a detailed
description of CSDFT.

Consider now N interacting electrons that are re-
stricted to move in the plane r = (x, y) in an external
scalar potential V (r) and a magnetic field B = Bez per-
pendicular to the x, y plane. In the symmetric gauge, the
external vector potential acting on the electrons is thus
A(r) = B/2(−y, x). After a local approximation for the
exchange-correlation energy is made, the total energy of
the system is written as a functional of single-particle
states Ψiδ with occupation numbers fiδ, where i labels the
eigenstates within spin δ = (↑, ↓):

E[Ψiδ] =
∑
iδ

fiδ 〈Ψiδ | −
h̄2∇2

2m∗
|Ψiδ〉

+
1

2

e2

4πε0ε

∫ ∫
dr dr′

n(r)n(r′)

| r− r′ |

+

∫
dr n(r)exc[nδ(r), γ(r)]

+

∫
dr n(r)V (r)

+
1

2
g∗µBB

∫
dr [n↑(r)−n↓(r)]

+ e

∫
dr jp(r) ·A(r)

+
e2

2m∗

∫
dr n(r)A(r)2 . (1)
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Here e is the (absolute) electron charge, g∗ a reduced Landé
g factor, and µB the Bohr magneton. The total particle
density is the sum of up-spin and down-spin density,

n(r) =n↑(r) +n↓(r) , (2)

nδ(r) =
∑
i

fiδ |Ψiδ(r) |2 . (3)

The paramagnetic current density jp(r) is defined as

jp(r) =−
ih̄

2m∗

∑
iδ

fiδ[Ψ
∗
iδ(r)∇Ψiδ(r)

−Ψiδ(r)∇Ψ∗iδ(r)] . (4)

The thermal occupation numbers

fiδ =
1

1 + exp[(εiδ−µ)/kBT ]
(5)

with chemical potential µ (which is adjusted on each it-
eration step to preserve the total electron number) and
single-particle eigenenergies εiδ allow a partial occupation
of levels at the Fermi surface for better convergence. This
was found useful when, during the self-consistent iteration
of the Kohn–Sham equations, the energy levels around the
Fermi surface came very close in energy. After convergence
is first reached for finite temperature, usually the Fermi
surface is nondegenerate. In a second step, the temperature
can then be dropped to zero, and finally, convergence of the
zero-temperature solution can be obtained.

The functional (1) is formally equivalent to the Hartree
energy, plus an extra exchange-correlation contribution.
This takes into account that the true ground state of the
system is not a product of single-particle eigenstates, but
an antisymmetric many-body wave function of more com-
plicated structure. In the limit of infinite homogeneous sys-
tem the functional (1) becomes exact and the wave func-
tions Ψiδ become pure Landau levels. Naturally, detailed
many-body calculations for the bulk are necessary for one
to obtain exc as a function of the electron spin-density nδ
and the strength of the external magnetic field B.

However, the first three terms of (1) describe the energy
expectation value of the internal Hamiltonian of electrons
and should not contain a priori any references to the exter-
nal field. The exchange-correlation energy exc for the bulk
depends on the field B, but this is only a consequence of
the fact that the external field changes the internal struc-
ture of the wave function. It turns out that it is actually the
vorticity

γ(r) = ∇×
jp(r)

n(r)

∣∣∣∣
z

(6)

of the wave function which is responsible for changes in exc.
It can be related to the external field B via the real current

j(r) = jp(r) +
e

m∗
A(r)n(r) . (7)

For the homogeneous bulk, j(r) = 0. Dividing (7) by the
density n and taking the cross product (B =∇×A) gives

∇× (jp(r)/n(r)) =−
e

m∗
B . (8)

Thus, when using the interpolation formulas for exc in CS-
DFT, one replaces the external field

B −→
m∗

e
| γ(r) | . (9)

To minimize the total energy of the system, a functional
derivative of E[Ψiδ] is taken with respect to Ψ∗iδ, the con-
straint of the Ψiδ being normalized is applied. The result-
ing self-consistent one-electron equation is[

p2

2m∗
+

e

2m∗
(p ·AAA(r) + AAA(r) ·p) +Vδ(r)

]
Ψiδ = εiδΨiδ

(10)

where

Vδ(r) =
e2

2m∗
A(r)2 +Vδ(r) +VH(r) +Vxcδ(r) ,

and

p = − ih̄∇ , AAA= A+Axc ,

eAxc =
1

n

{
∂

∂y

∂[nexc(nδ, γ)]

∂γ
, −

∂

∂x

∂[nexc(nδ, γ)]

∂γ

}
,

V↑,↓ =V ±
1

2
g∗µBB , (11)

VH =
e2

4πε0ε

∫
dr′

n(r′)

| r− r′ |
,

Vxcδ =
∂[nexc(nδ, γ)]

∂nδ
−
e

n
jp ·Axc ,

where we have dropped the arguments r. The total canoni-
cal angular momentum of the solution is defined as

Lz =
∑
iδ

fiδ〈Ψiδ | l̂z |Ψiδ〉 (12)

=m∗
∫

dr [xjpy(r)−yjpx(r)] . (13)

3 Computational method

We use a plane-wave basis

ϕk =
1

L
eik·r , (14)

with k = 2π
L

(η1, η2) and η1,2 = −κ,−κ+ 1, . . . , κ to solve
the single-particle Kohn–Sham equation (10) at each itera-
tion. Here L is the side length of the square calculation box
and κ the cutoff index determining the number of plane
waves used. For the corresponding equidistant space lattice
of the box, we use 4κ+1 points per axis. Consequently, the
Hamiltonian matrix is completely filled, and the the diago-
nalization basis set (14) is used in the best possible way.

We start the calculations by putting initial guesses for
AAA(r) and Vδ(r) in the space lattice points. We usually set
AAA= 0 and use square well potentials with suitable size and
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depth and various shapes for Vδ. We add small random per-
turbations to the initial potentials to help the system to
find solutions with broken symmetries. Using a fast Fourier
transform (FFT) the initial potentials are expanded in the
plane wave basis. The Hamiltonian matrices in the basis
set (14) are now calculated and diagonalized for up- and
down-spin electrons, respectively.

After the diagonalization, the FFT is again used to
obtain the eigenstates Ψiδ(r) and their derivatives in the
space lattice points. From these, the particle densities
nδ(r), the paramagnetic current density jp(r), and vortic-
ity γ(r) are determined. Then the new potentialsA(r) and
Vδ(r) have to be set for the next iteration. It is impossible,
however, to calculate the quantity Axc directly from (11).
Due to numerical inaccuracies in areas where the electron
density approaches zero, the term 1/n diverges faster than
the partial derivatives of ∂[nexc(nδ, γ)]/∂γ decreases, pro-
ducing insensibly large values for Axc.

Another problem arises at the edge regions of the dot.
Even in areas where the electron density is large enough
to generate correct values for Axc, when (11) is used, the
function is usually changing rapidly in the finite space lat-
tice used in the calculations. This leads to problems in the
convergence process.

We could stabilize the behavior of Axc on the edge areas
of the dot by using the following convoluted form instead of
(11):

eAxcx =
∂ẽxc

∂γ

∂

∂y
ln(n) +

∂

∂y

∂ẽxc

∂γ
,

eAxcy = −
∂ẽxc

∂γ

∂

∂x
ln(n)−

∂

∂x

∂ẽxc

∂γ
, (15)

where

∂ẽxc

∂γ
=

∫
dγ′

γ′−γ
√

2π∆3
e
−(γ′−γ)2

2∆2 exc(nδ, γ
′) . (16)

Here, (15) is analytically equivalent to the original form in
(11), but avoids the divergence of the 1/n term in the low-
density regions. In addition, exc is Gaussian-convoluted
with respect to the vorticity and now assigned the symbol
ẽxc. The value of the convolution parameter ∆ is chosen
such that it drains the dependence of ẽxc on γ for very low
particle densities, but is of negligible effect otherwise. The
convolution integral is done numerically. To apply (15) to
Axc, we again use the FFT for the derivatives. First, the
values of ln(n) and ∂ẽxc

∂γ
are calculated in the space lat-

tice points and then expanded in the plane-wave basis. The
derivative is taken analytically and turned back into the
space lattice. To calculate the scalar Hartree potential, we
also use the plane-wave expansion.

Once the new potentials A and Vδ are at one’s dis-
posal, one should not rush into the second iteration imme-
diately, especially because the long-range Coulomb inter-
action makes the system very unstable against enhancing
density oscillations from iteration to iteration. To stabilize
the convergence behavior, one uses the mixing formula

Vi+1 = (1−a1 +a2)Vi−a2Vi−1 +a1V , (17)

for all potentials A and Vδ. Here Vi+1 is the potential to
be used on the next iteration, and Vi and Vi−1 analogously
are the potentials for the current and previous iteration,
respectively. V is the pure new potential discussed above.
For the parameters a1 and a2 we typically have used values
of 0.02 and 0.70. The parameter a1 determines approxi-
mately how fast the potential is moving towards the new
potential V, and a2 determines the inertia of the solution.
The above parameter values indicate slow speed with high
inertia. Even if the suggested potential suddenly changes
to something completely different, the solution continues
on its old path for a while. This is the desired behavior
in the case of level crossings, for example, and also makes
the final approach to the converged solution faster. For full
convergence, however, several hundred iterations are usu-
ally needed.

The interpolation formula for exc is given in terms of
total particle density n, spin polarization ξ = (n↑−n↓)/n,
and filling factor ν = 2πh̄n/eB, where B is replaced by
m∗ | γ | /e for CSDFT (9). For now, we have used

exc(n, ξ, ν) = e∞xc(n)e−f(ν) + eTC
xc (n, ξ)(1− e−f(ν)) (18)

where f(ν) = 1.5ν+ 7ν4. This form interpolates between
the infinite magnetic field limit

e∞xc(n) =−0.782
√

2πne2/4πε0ε (19)

and the zero field limit eTC
xc (n, ξ) ofTanatar and Ceperly [10]

generalized for intermediate polarizations [7]. For ν < 0.9,
the interpolation (18) follows closely the results of Fano
and Ortolani [11] for polarized electrons in the lowest Lan-
dau level, and saturates quickly to a zero field result for
ν > 1.

4 Results

As an example, we consider a typical 10-electron quan-
tum dot in a GaAs heterostructure, e.g., m∗ = 0.067me,
ε = 12.4, and the spherical harmonic confining potential
h̄ω0 = 3 meV.

For B = 3.4 T, the total charge density (see Fig. 1a) is
rotationally symmetric, forming the so-called maximum-
density droplet [12]. The corresponding current density
j(r) is plotted as a function of the spatial coordinates r =
(x, y) in atomic units in the vector diagram in Fig. 1b. (The
maximum length along each axis corresponds to 14.4 a.u.).
Two rotationally symmetric current loops circulating in
opposite directions are seen. When the magnetic field is
increased, the charge density in the internal coordinates
breaks rotational symmetry, forming a bumpy structure
(see Fig. 2a), as has also been observed in the Hartree–Fock
calculations of Müller and Koonin [9]. Here, the current
density also shows a broken symmetry, forming vortex-like
structures which have their centers at the maxima of the
charge density (see Fig. 2b).

Similar results were found for other electron num-
bers, and the general scenario seems to be that right
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Fig. 1. Total density n(r) (a) and current density j(r) (b) for
a quantum dot with 10 electrons and rs = 1.7 a.u. at B = 3.4 T,
which forms a maximum-density droplet [12].

Fig. 2. As in Fig. 1, but for B = 6.9 T. In such strong magnetic
fields, solutions with broken rotational symmetry exist.

after the dot becomes fully polarized, the density pro-
file has perfect azimuthal symmetry. The density inside
the maximum-density droplet is nearly constant, with
only a small wiggle right at the edge, where it continu-
ously drops to zero. The orbital angular momentum then
equals Lz = 1

2N(N −1), corresponding to the occupation
of all the (spin-polarized) orbitals with 0≤ l ≤N −1. In-
creasing the field strength leads to a reconstruction of
the density distribution inside the dot: Some electrons
are promoted to orbitals with higher angular momentum,
leaving some of the lower angular momentum states unoc-
cupied. This results in an overall bumpy electron density,
as shown in Fig. 2a. Within Hartree–Fock calculations as-
suming rotational symmetry, edge reconstruction was first
found by Chamon an Wen [13]. The edge regions, how-
ever, also have broken rotational symmetry [14] in the
internal coordinate system, and are the precursors of the
bumpy states.

5 Conclusions

We have applied CSDFT to circular quantum dots in
large magnetic fields and found that the maximum-density
droplet develops into a state with broken rotational sym-
metry, in agreement with the results of [9]. We point out
that calculations restricted to azimuthal symmetry cannot
account for the rich variety of density distributions in the
internal coordinates. We finally mentioned that in larger
circular dots, edge states, formed as suggested by Chamon
and Wen [13], have a broken radial symmetry [14].
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